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ABSTRACT

An introduction to triple-deck theory for steady, two-dimensional

boundary layers in low-speed flow is presented. it aims to clarify how the

rational structure of the theory can rest on few premises and to make its new

ideas and challenges more widely accessible.
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SIGNIFICANCE AND EXPLANATION

Fluids are within us and all around us, from kitchen to galaxy, and have

been studied intensively for over two hundred years. Some central questions,

however, have continued to defeat Science. Why do you not inhale the same

body of stale air that you have just exhaled? The answer lies in a break-away

of fluid streams from solid surfaces which we see everywhere, but cannot yet

understand or predict in any detail.

It now appears, however, that some decisive progress towards solving the

riddle has been made by a restricted group of aerodynamicists and that we are

in the midst of what can really be called a break-through. At the same time,

a much wider scientific community appears to have formed a strong interest in

access to the subject on account of its importance and also, of dimly

perceived, novel challenges that it poses for mathematical analysis.

Conversely, it looks as if mathematics could accelerate and widen the break-

through. To this end, the following offers an introduction to the main line

of the new theory for a wide class of scientists and describes some of its

analytical challenges.

Since the earlier, advanced reviews have proven so difficult for all but

specialist aerodynamicists, the following is restricted to just the basic

theory in its simplest setting. This offers an opportunity, also here seized,

of giving a clarified, new development of the main theory from very few

premises to illuminate its logical structure.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



STEWARTSON'S TRIPLE DECK

R. E. Meyer

1. Introduction

The main concern of boundary-layer theory during its first half-century

has been with fluid motion at large Reynolds number Re past streamlined

bodies. In this context, the term 'streamlined' is meant to indicate that the

motion, except very close to the body and in a thin wake, is almost

independent of Re and can therefore be determined closely without reference

to the boundary-layer development. The practical scope of the theory is

severely limited, however, by such a condition of 'weak interaction' in the

sense that the boundary layer and wake have only a minor influence on the rest

of the flow.

The primary aim was to understand the aerodynamics of wings at small

incidence (Figure 1) and observation soon confirmed the striking success of

Prandtl's theory in this context. As the incidence is increased, however, a

stage comes where the airfoil Ostalls". Indeed, if the airfoil of Figure 1 be

rotated through 900 to a position broadside to the incident stream (Figure 2).

intuition and experience predict a flow pattern in which the stream has

"broken away" entirely from the body at what had been originally its nose and

tail. At an intermediate inclination of the airfoil (Figure 3), the incident

stream will whet the front part of the upper airfoil side, but will break away

from it at some point which inviscid fluid dynamics by itself has not been

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
work was partially supported by the National Science Foundation under Grant
No. FMCS-6001960.
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able to determine. The boundary layer on the body and the rest of the flow

then 'interact strongly' in the sense that no approximation to either im

determinable independently of the other.

It is readily apparent from everyday experience that a similar principle

of strong interaction applies to many real fluid motions. For instance, human

breathing must involve such "breakaway" of a stream in an essential way,

because otherwise, we could only inhale the same body of gas that we have just

exhaled. Despite all the aeronautical triumphs, therefore, the failure of the

first half-century of boundary-layer theory to advance beyond the weak-

interaction premise has left the understanding and prediction of most real

fluid motions still in a rudimentary stage.

This challenge and need to come to grips with strong interactions has

fuelled a cooperative research effort over two decades under the leadership of

K. E. Stewartson, which has resulted in a major step forward. The following

aims to open a readier access to this step for a wider audience, because one

can hardly fail to be impressed by the work achieved, to enjoy the elegance of

the new ideas taking shape, and to be intrigued by the novel challenges to

mathematics emerging.

The present survey is, of course, far from being the first and owes a

particular debt to those of Messiter [1978] and Stewartson [1975]. The early

reviews, however, aimed mainly at redirecting research and were addressed to

those steeped in the work, in the first place. Later reviews were burdened by

the sheer bulk of all the recent results. This was aggravated by the fact

that the earlier, clear successes of the theory uoncerned supersonic

aerodynamics, where the theory rests on a rather large body of knowledge

commanded normally only by professional aerodynamicists. To avoid this

substantial barrier to access, the introduction to follow is limited to low-

-4-
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speed flow, with only a few remarks on the supersonic successes in Section

S. It attempts a survey taking little for granted beyond the Navier-Stokes

equations and rudimentary notions of fluid dynamics of wide familiarity. And

it aims only at an illumination of the main features of the rational structure

of the theory to the degree that they have yet emerged. [Reference,

accordingly, is made only to books and review articles, rather than original

sources*]

The next section outlines the limit concept underlying Prandtl's

boundary-layer theory for weak interaction. Section 3 recalls certain aspects

of that theory which are of particular relevance to the present purposes.

Those begin to be addressed in Section 4 by the introduction of a triplet of

notions which appear essentially sufficient to characterize the new theory.

Section 5 shows how their application to the Navier-Stokes equations results

in a need for more than two, simultaneous boundary-layer limits. A third,

needed limit is developed in Section 6 and shown to complete a definite

triple-deck of limit concepts, but all the same, to leave us far short of a

definite system of differential equations for a description of the flow.

Section 7 outlines how an exploration of the interaction between the limit

concepts ties up the loose ends into a boundary layer problem of

mathematically quite novel type. It has been explored successfully for

supersonic flow (Section 8), but for low-speed flow, turns out to be a dead-

end. In Section 9, finally, an attempt is made to sketch Sychev's ideas on

how the impasse might be broken to nail down an important step in the

understanding of fluid motion.

In a way, the whole present enterprise may be described as an attempt to

enable the non-specialist reader to benefit thoroughly from such surveys as

Stewartson (1975], Messiter [19783 and Stewartson [1981]. To that end, an
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Appendix adds asuccinct derivation of the Illingworth-Btewartson

transformation to give a first impression of how that transformation removes

the barriers to a direct extension of triple-deck theory to compressible and

supersonic flow. its development f or unsteady and three-dimensional flow

would not yet appear to have reached a stage suitable for an introductory

review.

-6-



2. The Limit Concept

To fix the ideas, the discussion will be focused on the example of flow

past an airfoil much like that indicated in Figure 1. The motion will also be

assumed two-dimensional, incompressible and steady in the pilot's frame of

reference, to which it will be referred throughout. Let U denote the flight

speed (the wing is envisaged as moving into air at rest, far ahead) and

xy, Cartesian coordinates measured in units of a body dimension L from a

suitable point on the body surface. Mass conservation is satisfied by

deriving the (non-dimensional) velocity components u,v in the respective

directions of x and y increasing by

(1) u - 8 /8y, v - a/ax

from a stream function *(x,y) measured from the body surface in units of

UL. If P,P and p(x,y) denote respectively, the constant density and

2
viscosity and the local pressure measured in units of PU , the overall

Reynolds number is PUL/p - Re and momentum conservation is expressed by the

incompressible Navier-Stokes equations,

y*xy - *x*yy - -px + R e -' l yxx + *yyy)

(2)
-1

xxy y yxx - -py - Re xxx *yXY,)

where subscripts denote partial differentiation, with boundary condition

u - v - 0 on the body surface.

The notion of limit most commonly employed in Boundary-Layer Theory, and

briefly referred to as Lim hereafter, is that of a 'stretching' transformation

x - x/X(Re), y - y/Y(Re)

(3) *(x,y) - a(Re) 4 (x ,y

p(x,y) - pe (x,y) + '(Re) p*(x*,y*

-7-



such that the limit Re + 4 of the transformed equations with appropriate

boundary conditions have a strict solution ( Cx ,y ), p (x y ), that is,

p is differentiable and * is thrice differentiable for all x and y

in the fluid domain.

Superficially, of course, this notion looks quite improper in the sense

of routine mathematics, since it concerns the limit of the differential

equation instead of the limit of its solution. 'Proper' mathematical work on

such equations, however, has long been proven to be hopeless until an

understanding has been gained of the real issues that it must address.

Meanwhile, the 'improper' limit notion has proven itself a thoroughly reliable

and fruitful guide to the discovery of candidates for the role of approximate

solution of (2), which are a greatly needed starting point for rigorous

work. Once this key shift of objective towards the discovery of candidates be

accepted, the theory to be outlined will be found to have a remarkable degree

of logical coherence, even though the present account is not arranged to

emphasize that aspect.

One obvious example of such a Lim is, of course, the 'external flow' in

which x, y, + and p themselves are kept fixed as Re + -, so that in (3),

(4) X•Y 0- 1, W = O

and * I e(x,y), p - Pe (x,y) describe the classical, irrotational flow past

the geometrical airfoil shape with circulation determined by the Kutta-

Joukowsky condition.

Another familiar example is Prandtl's boundary layer, for which it is

convenient to take the direction of x increasing tangential to the airfoil

surface in the sense of the local flow and that of y increasing, normal to

that surface and pointing into the fluid. Prandtl's Lim is then characterized

by the stretching transformation

-8-



(5) X - 1, Y W Re- 1/2

of the local coordinates.

To keep confusion between different Lim's at bay, an asterisk will refer

to the generic definition (3), but a subscript i will denote its particular

* *

case (5), e.g., * i(xiyi) denotes the special case (5) of ( (x ,y ), and

v i  * i/axi , etc. The subscript e only serves to recall the shift of

emphasis which interpretation of (4) as a Lim introduces into the aspect of

quantities already considered in (2).

The main content of the weak-interaction principle is that the two Lim's

(4) and (5) together give a complete picture of the flow, and that brings up

an important conceptual point intrinsic to the limit motion. The two Lim's

represent different views of the same solution of the Navier-Stokes equations

(2), different magnifying glasses by which we focus on different features of

the motion so as to gain a greatly increased understanding of what goes on in

the fluid by the comparison and correlation of the two views. It follows that

the two views must display a consistency consonant with the nature of the

solution of (2) which they illuminate. The diffusive (parabolic) structure of

(2), in turn, implies that the solution of (2) must be a smooth function of

x and y.

A simple illustration of such consistency is provided by the observation

that (1) implies v (by contrast to vi) tends to zero for all yi under

the Prandtl stretch (5) as Re * . Since v(x,y) is smooth, its external-

flow limit ve(x,y) must also be zero at those values of y corresponding to

values of Yi' that is, at y = 0. The familiar, zero-normal-velocity

boundary condition of classical hydrodynamics then re-emerges as a consistency

condition implied by the Lim-definition together with the weak-interaction

principle.

-9-



In turn, the weak-interaction principle is also meant to postulate that

the external flow adheres to the airfoil without breakaways and tends to a

uniform one at large distances from the body. The condition of zero ve at

the body surface then suffices to determine it uniquely. In particular, the

values of Pe and us along the body surface are thereby determined. For

the pressure, that is already anticipated by the notation of (3) and (4), but

for the tangential velocity component u, it entails a further consistency

condition: since ui - u under the Prandtl-stretch (5), the composite

picture of the two Lim's can represent a smooth solution of (2) only if

ui - us for all x at those y belonging to both Lim's, i.e., as yi

but y y + 0 (see (6d) below).

Such consistency implications of the limit notion play a key part in the

logical structure of the theory to be outlined below. Their technical name is

matching conditions, and their mathematical nature has been explored carefully

by Lagerstrom, Kaplun and others [Eckhaus 1979] because matters can get

complicated when the limit notion is pushed to high orders of approximation.

For the present purposes, however, no such complications arise and it may be

sufficient to mention only one further aspect: if consistency of two Lim's

turns out impossible, then there are only two alternatives -- one of the Lim's

must be rejected as a false lead on the way to discovery of a candidate, or a

third Lim must intervene between the first two to reconcile them.

-10-
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3. Weak Interaction

A fairly full account may be found in many books [e.g., Goldstein 1938,

Lagerstrom 1964, Stewartson 1964, Meyer 1971] of how the limit notion a,.d

weak-interaction principle lead uniquely from the Navier-Stokes equations (2)

to a set of limit-differential equations for the Lim characterixed by (5).

Those Prandtl equations are

(6A) u, = a*i/aY- ,  vi - -*/ax,
2 2

(6b) u aui/ax i + vtaui/ayt - -dp e/dx + a ui/ay i

(6c) ui(xi,O) = vi(xiO) - 0

(6d) ui(xi,yi) u e(xi ) as y +

where Us (Xi) is the surface value of the velocity of the external flow,

related to its surface pressure Pe(Xi) by Bernoulli's equation

(7) p + .1 U oner.

This is a simpler system of nonlinear diffusion equations than (2), to be

complemented by specification of ui(Oy i ) for all yi > 0 as an initial

condition. It should also be recalled from the discussion of the preceding

Section that, from the viewpoint of the Prandtl Lim, ue and p are known

quantities in (6b), (6d).

It will be helpful to remark here on three further aspects of Prandtl's

Lim which are of particular relevance to the later discussion. While our

local Cartesian coordinates have a strictly global interpretation only for the

limiting case of an airfoil of the shape of a flat plate, a closer exploration

of the influence of surface curvature [e.g. Goldstein 1938] shows it not to

affect the theory to the order of approximation considered in this account, as

long as the body shape is independent of Re -- as will naturally be envisaged

-- and the surface curvature is finite everywhere except at a trailing edge.

The underlying reason flows, of course, from the fact that a Lim like

-11-



Prandtl's uses only a coordinate system covering distances Yi from the body

surface that tend to zero by comparison with the surface's radius of curvature

as Re + ": when viewed through such a microscope, the body surface looks

flat. The result of the curvature estimates is that the xi, yi-coordinate

system can serve as a semi-local one for all the Lim's to be here considered
*

(except the external flow) in which x measures distance along the whole

(upper or lower side of the) body surface and y*, distance normal to it, and

that interpretation will be used henceforth. To the order of approximation

considered in the following, moreover, the Lim-definition can be applied to

(2) without regard to curvature corrections.

Secondly, an interesting facet of the weak intera.tion emerges from the

consideration of consistency to a second approximation. Though v - -a*/3x

tends to zero under the Prandtl Lim (5) as Re + -, the same does not follow

1/2for v - -i/ 3 xi - Re v, and that function will be determined whenever
i ii

Prandtl's equations (6a) - (6d) have a unique solution. Its limit v (xi,W)
ii

may be finite and non-zero, in which case "zero normal velocity" ceases to be

the exact boundary condition for the external flow at finite Re. Instead,

the body surface assumes a 'permeable' aspect, from the point of view of the

external-flow Lim (4), and looks as if there were a small, normal velocity

v (x,O) - Re- /2v i(xi,) across it. Its determination is commonly approached

by considerations of mass-flow balance. Since (6c), (6d) show ui to fall

from ue, at large Yi' to zero, at yi - 0, it may be anticipated that

yiue(xi) will generally exceed the stream function i(Xiyi), although both

grow with yi at the same rate as y + M , by (6d). That suggests

consideration of

(8) lim (uey - l)/u - 6 (xi
y +

y+O-2

-12-



which characterizes the mass-flow deficiency of the boundary layer, and

Re1/26(x ) is normally found to be a well-defined, positive function in a

weak interaction. In its terms, the surface-value of the normal velocity for

the external flow becomes

(9) v (x,O) - (d8/dx i)u (xO)

and the boundary-layer mass-flow deficiency is then seen to be interpretable,

from the viewpoint of the external-flow Lim, either as a permeable body

surface with volume-outflow rate ve(x,O) per unit distance along the surface

and unit span normal to the flow plane, or as a solid-body surface displaced

from y - 0 by a distance 6(x ) - 0(Re'/ 2 ). Aerodynamicists have taken to

the latter interpretation and as a result, mass-flow effects in the theory are

normally discussed in terms of this displacement thickness 6.

As emphasized in the preceding Section, the known arguments leading to

Prandtl's equations (6) prove only that those equations identify the unique

candidates for approximate solutions of (2) of the general type contemplated,

if there are any, but that has not yet been established rigorously.

Historically, the value of Prandtl's equations was first demonstrated by

experiments and by technology based on them. Applied mathematicians then

explored the equations quantitatively and purer mathematicians turned to the

task of proving that their solutions are approximate solutions of the Navier-

Stokes equations. When that failed, they discovered that Prandtl's equations

themselves have mathematical interest. Oleinik [1963] proved existence and

Walter 11970] found a substantially simpler proof. Nichel [1958] established

uniqueness and Serrin [1967) and Pelletier 1972] attacked the key question of

the asymptotics of solutions of (6). Pelletier was able to show with

considerable generality that, in normal circumstances and for dpe/dxi ( 0,

the influence of the initial condition is transient and with increasing xi,

-13-
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the solutions develop an asymptotic character determined by the functions

Pe(xi) and ue(x i ) related by (7). In this way, he illuminated the

essential character of Prandtl's weak-interaction equations (6) as an

inhamogeneous system of partial differential equations forced by the given

functions dPe/dXi and ue(xi) in (6b) and (6d).

All those theorems, however, amount to only half a loaf because they

depend on a 'favorable' pressure gradient, dPe/dxi ( 0. When forced by an

'adverse' pressure gradient, dpe/dXi > 0, the solutions develop differently,

and our knowledge is more tentative. As xi  increases, the surface value of

aui/ayi then decreases, and before it ceases to be positive, the solution of

(6) tends to develop a singularity which is terminal in the sense that a

continuation of the solution beyond it is not possible. Breakaway (Figure 3)

involves a reversal of flow direction near the airfoil surface and hence, a

negative 'wall shear' Ou /3y,, and before the solution of (6) can reach

that, weak interaction appears to fail decisively.

-14-
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4. Mild Interaction

Strong interaction poses the formidable difficulty of interdependent non-

uniqueness of both the external inviscid flow (Figure 3) and the viscous flow

in boundary and shear layers. It is fortunate, therefore, that careful

experiments have revealed an interval of 'pro-stall' incidences in which

recirculation of the fluid in confined to a thin 'bubble' region adlacent to

the airfoil surface (Figure 4). For part of this incidence interval, the

observed bubble thickness does not greatly exceed the displacement thickness

of the weak-interaction boundary layer ahead of the bubble and accordingly,

the total mass-flow deficiency near the upper side of the airfoil remains of

the sams order as in a weak interaction, and the first approximation to the

external flow therefore remains the classical potential flow past the

geometrical airfoil.

Such observations demonstrate that the key-process of 'separation' --

reversal of flow direction and recirculation of fluid close to the body

surface -- can occur without full break-away (Figure 3) and without really

strong interaction between boundary layer and external flow. An opportunity

thus appears of dividing the difficulties of strong interaction by studying

first the flow at pro-stall incidence and in particular, by focusing attention

on the bubble ends, where a merely local breakdown of weak interaction seems

to occur. This opportunity to explore the local mechanism of separation was

seized by K. Z. Stewartson and the aim of the present account is to outline

the main ideas of the theory so far developed under his leadership.

To understand a little better how he succeeded in gaining a grip on the

problem, it may be noted that the bubble thickness (Figure 4) is not observed

to vary strongly over most of its length. This indicates that the rate of

change of displacement thickness, d6/dxi, also remains of the order of

-15-
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magnitude typical of weak interaction, except perhaps at a bubble end. As

expected from weak-interaction experience, on the other hand, computation of

the solutions of (6) along the front part of the airfoil surface runs into the

terminal singularity as the observed, front bubble end with its reversal of

flow direction is approached. That would seem to indicate a growth of x-

derivatives of velocity or pressure to levels beyond those which a weak

interaction can accommodate. In the magnifying glass of the Prandtl Lim, this

would look like a singularity, and its resolution might require a stretching

transformation also of x. These plausible interpretations of the

experimental and theoretical oracles suggest the following three notions.

(I) The displacement thickness remains of order Re 1 / 2

throughout.

(11) The neighborhood of a bubble end in a region of velocity or

pressure changes that are stronger than weak interaction can describe,

but not strong enough to affect the external-flow limit. The

possibility needs consideration that those changes might penetrate

farther into the fluid than does a weak interaction, but not to

distances independent of Re (which the external-flow Lim would see).

(III) The region of those stronger changes near a bubble end appears

quite short also in the .5irection along the surface, by comparison to

the weak-interaction boundary layer and to the bubble (Figure 4). That

exceptional region, in which the apparent singularity is resolved, may

plausibly need to be thought of as shrinking to a point as Re + -.

One of the aims of the present account is to show that these three

notions can serve as the essential basis of the theory to be outlined and may

therefore be considered to embody a definition of what will, for brevity, be

called mild interaction. To clarify appeal to the components of this

-17-



definition in the following discussion, they will be referred to briefly as

(I) Mass-flow bound,

(II) Penetration,

(III) Localization.

To simplify the presentation, it will be very helpful to restrict its

scope by three working-principles complementary to the main definition.

Attention will be confined to the front end of the bubble, which is easier to

think about because it involves a process growing out of a standard, un-

separated, weak-interaction boundary layer. This identifies an asymptotic,

initial condition for the mild interaction, which complements the definition

and will be referred to as

(IV) Upstream condition.

Next, the notion of Lim (Section 2) admits a very large class of

stretching transformations. It has been demonstrated in another context

[Meyer and Wilson 1973] how it can be treated systematically to sort out

uniquely those transformations of primary significance for a problem at

hand. Such an approach, however, is a research tool for settling technical

controversy and would lengthen the present discussion so as to obscure the

matters of real interest. As a working principle, an a-priori restriction of

the stretching functions X, Y, 0 and W of Re in (3) to powers of Re

will therefore be adopted. It should be remarked immediately that the

advanced theory of mild interaction bristles with logarithms of Re, but for

the present purposes, powers will turn out to be adequate.

This still leaves a large class of Lim's and not all of them can

plausibly be of equal importance. Many will have to be discarded as

inconsistent with the governing equations and other conditions of the problem

that have been identified already. Others will be merely limits of other

-18- i



I Lim's that offer more complex and useful information and insight. These

aspects of the Lim notion have been explored by Lagerstrom, Kaplun and others

[Eckhaus 1979] and it would again be unprofitable for present purposes to

enter upon them at length. Instead, the working principle will be adopted

that the discussion is to be firmly directed towards a description of the mild

interaction by the minimum number of Lim's. The technical term for them is

Isignificant limits' (Eckhaus 1979].

::

-19--
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5. Two Decks

To apply now the notions formulated in Sections 2 and 4, begin by noting

that the localization condition (III) implies a stretching function

-Q
X - Re * a > 0

in (3), if x be measured from a suitable point in the mild interaction

region.

The upstream condition (IV) requires consideration of Prandtl's Lim, for

which Y - 0 - Re 1 /2 , by (5). The transformation for this "main deck" LiE

is therefore

xRe ,j~

(10) *(x,y) (

p(xy) Pe(X) +

with 8 - Re1t2  and pe(X), Ue(X) used as in Section 3 to denote the known,

surface values of pressure and tangential velocity of the external flow.

Since x + 0 as Re * - at all i, only the values pe(O) and ue(O)

actually enter into the argument and these will be denoted briefly by Pe

and ue.

Since (10) fails to account for the penetration condition (II),

consideration must also be given to another transformation that can bring

greater distances from the body surface into view, and this is called the

"upper deck" Lim. At such greater distances, the upstream condition (IV)

implies that the streamlines came from the external flow because the mass-flow

bound (I) excludes a displacement of streamlines near the body surface by much

more than 8 = 0(Re-1/ 2 ). By Kelvin's theorem, therefore, the flow in the

upper deck remains an irrotational one, which has no distinguished direction

of influence, and accordingly, Lim cannot normally involve a different stretch

for x and y and must have a transformation

-20-



A U A
x I xRe, y yRe

A A
(11) *(x,y) - Uey + 0(Re)^(X,y)

pox,y) - pe

with

(12) 0 < a < 1/2

in order that the upper deck do penetrate significantly beyond the main deck.

The condition (I) that the mild interaction has a mass-flow deficiency

uy - of the same order as that of a weak interaction (Section 3) implies

(13) Re- 1/ 2

Further progress depends on direct use of the Navier-Stokes equations.

If D abbreviates the convective derivative for general, stretched

variables,

•D * *a a a(14) D u--' + v -. . .,

ax ay ay ax ax ay

then substitution of (10) into (2a) yields, by (13),

(15a) - Re+ Re

+ 0 as Re +

by the Lim-definition of Section 2 and by (12). Similarly, substitution of

(10) into (2b) and of (11) into (2a) and (2b) yields

(15b) -D 3i/8 + * Re 1- 2 a ap/ag + 0 ,

(A1aA A 1-2a A A
(16a) D * ylay + W apax + 0

A1b - A/3 + A 1e- 2 a A A

(16b) -D * + Re ap/ay + 0 as Re +

Mainly through the localization condition (III), the enhanced streamwise

changes in the mild interaction are thus seen to overshadow the viscous shear

in both decks so that both are governed by inviscid limit equational

-21-
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To learn more about I and I in (15) and (16), we may now turn to a

survey of alternatives typical of Lim-arguments. If A Re1- 2a + 0 as

Re + 0, (16a,b) would imply mere convection of a velocity perturbation

already present upstream, and by (IV), could describe only the constant, weak-

interaction correction to ue and ve - 0. With such a choice of stretching

function, therefore, the transformation (11) cannot give nontrivial

information on the velocity perturbation of the upper deck. If

A 1-2a ^
T Re + M, on the other hand, (16a,b) would imply p E const, which could

describe no more than the weak-interaction correction of Pe and therefore,

would make the transformation (11) equally uninformative. The only stretch

giving nontrivial information can therefore be V = Re

Similar information on N may now be deduced by appeal to consistency.

As a preliminary remark, recall that the limit equations (16a,b) are an

inviscid, Euler system and, by the upstream condition (IV) and Kelvin's

theorem, must describe a potential-flow perturbation. This could be

determined uniquely by specification of the 'surface' pressure distribution,
A A

P(x,0), together with the condition that the perturbation decays to zero as

+ 2 . Accordingly, P(x,0) X 0, for otherwise the perturbation would

vanish identically and there would be no upper deck and no mild interaction.

By (10) and (11), however, consistency of the representation of pressure as a

continuous function requires

A A A A
lim p(x,y) - f lim (i, )

unless another Lim intervenes between the two decks. By the working principle

that we look for the minimal number of Lim's, the argument against such
A A

intervention is omitted. Since p(x,0) A 0 and the Lim-definition requires

to be bounded on compacts, at least, it follows that

-22-
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A 2a-1

(17) - Re

By (12) the limit equations (15), (16) for the upper and main decks,

respectively, now become
SA A

(18a) Da/ay + ap/3x + 0

A AA

(18b) _ / + *pa +a

(19a) af/a + 0 ,

(19b) -Oai/e + a3/ag + o

A A
as Re + 0, for all x and i and for all y and g > 0.

The plausible suspicion that inviscid equations cannot adequately

describe a boundary-layer process can be raised into more plastic relief by

some striking conclusions following readily from (19a,b). From (19a),

at/aj - a is merely convected through the main deck from the weak interaction

upstream, so that it is a function only of 0,

(20) - a/ag - f(O)

By another interpretation of (14), it is also seen from (19a) that the

'streamline slope', defined as

(21) -(M/ai)/(M/a) M 5 ,

is independent of j. The same follows for ae/aR, and by (19b),

ae/ai - -( /i)-2 a6/a ,

so that aj/da is also independent of . By (10), (11) and (17), however,

consistency of the pressure representation requires

lim a6/3 - Re - I 2 lim y 0

by (12). Accordingly, /j 0 and

(22) 5 and are independent of ,

the main deck merely transmits the perturbations of pressure and streamline

slope from the upper deck towards the body surface.

-23-
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Now, the Navier-Stokes equations (2) express conservation of momentum by

a balance of pressure, momentum and viscous stress. By their boundary

condition at the body surface, the momentum near it must be arbitrarily small,

and nontrivial pressure changes in a mild interaction can,. by (22), be

balanced near the body surface only by another deck of enhanced shear stress.

Hindsight now permits us to make a thumbnail sketch of the proof of this

Section, which may help to pull its threads together and also to illuminate

both the detailed reasoning behind the mild-interaction premises (M) - (III)

and the possibilities of reducing those premises further. The short extent of

a mild interaction prevents viscous shear from having a .,bstantial, direct

influence on the part of the bubble-end process visible in the classical

Prandtl limit. As a result, his limit describes no more than a short stretch

of weak interaction, unless significant perturbations extend beyond his

boundary-layer thickness. Nontrivial perturbations extending beyond it, on

the other hand, make the process visible in Prandtl's limit one of mere

transmission, and momentum conservation close to the body surface is not then

possible without enhanced, viscous shear there.
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6. Lower Deck

Shear stresses substantially exceeding those of a weak interaction

(Section 3) require Re- a2/ay2 + - as Re + - and the third deck

exhibiting them must be a Lim with transformation of form

- x- = n B  B 1I
xRe, y Re 0 .

2
(23)

*(x,y) - ;(Re)j(x,y), p(xy) - Pe + I p(x,y)

with again

- Re
2 a- 1

for consistency with the transmitted pressure. Since B > j, (10) shows that

(23) resolves the limit + + 0 of the main deck.

The mass-flow in this lower deck depends on the particular nature of the

weak interaction from which the mild interaction develops. The Reader will

have grown impatient to see the issues resolved in one case, without

enumeration of alternatives, and with attention already focused on the front

end of the bubble (Figure 4), it will now be further restricted to the most

common case of weak interaction with normal type of skin friction,

Y_ 1 3 /ayi + Ti(xi) as yi + 0. If Ti(0) = T, briefly, it follows from the

upstream condition (IV) and from (10) and (12) that the main deck must also

have

(24) lim 1 -1/31)+ T as + +- .
9+o

In terms of i and l = / this relation is

lim ((-l2a /a ) = (2T)1/2

first as + -m, and then by (20), throughout the mild interaction. As

+ 0 and y + " it follows from (10) and (23) by consistency that
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0Re~ a1/3ay- (2T 0 /a)l/ as y+

and then from (13) that

(25)Re and 3jI/3y -Ty +A(;) as y +

Substitution of (23) into (2a,b) now yields, by a computation analogous

to that of Section 5,

D + Re 2 ( o + 0 - 1 )  -Re30 - - 3/2 El + O

(26) y y

ap/ay + 0

as Re + ". Just as in Section 5, the alternatives may now be explored to see

fairly readily that positive or negative choices of a+O-1 or 8 - 1/2 - M/3

imply truncations of (26) that are either degenerations inconsistent with a

mild interaction or are reduced forms of (26) describing only sublayers

y + 0 or y + a of (23). The choice
1

+O-1 - -- a/3 - o
2

is thus seen to yield the only significant Lim for the lower deck, and it

implies

(27) - Re- 3 / 4 , ; = i Re- 1 4

by (25) and (17).

All three stretching transformations (10), (11) and (23) have thus been

determined from the Navier-Stokes equations, the definitions of the limit

notion and the mild interaction, and the upstream condition (IV) with normal

type of skin friction. Such a mild interaction must penetrate beyond the

normal boundary layer thickness of order Re"1 / 2  to distances of order

Re -3/8 , it must involve three significant decks and must exhibit a much

enhanced pressure perturbation of order Re-1 /4  (by contrast to that of

order Re"1 / 2  in a weak interaction).

-26-
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From (26) and (14), the lover deck must be governed by the limit

equations

(28a) - v-

(28b) u~/x+ va/y-+ 2 a 2

(28c) */*y- 0

which are of exactly the same form as Prandtl's equations (6a), (6b)! Their

theory (Section 3) leaves no doubt that the physical body-surface condition of

the Navier-Stokes equations,

(28d) ;(;,0) - V(;,0) - ;(;,0) - 0

is appropriate to the lower deck equations and hence, there appears no call

for further decks. The 'outer boundary condition' corresponding to (6d) is

now (25), and since the lower deck in a weak interaction is merely the

sublayer close to the body surface, the initial condition for (28) is (24)

translated by (10) and (23) into its lower-deck representation,

(28e) ;(;,Y)+ aT Y -a forall y)0

Comparison with (25) adds the information that A(x) + 0 as ; +

With demonstration of necessity and structure of the triple deck thus

complete, it may be opportune to vent some qualms. Can powers as small as

Re / 8 plausibly distinguish orders of magnitude when the largest Reynolds

numbers at which steady motion is practically realized do not much exceed

My own view is that the true asymptotic structure of a theory tends to

emerge only at a late stage of development. It is reinforced when

experimental results at even lower Re show agreement [Stewartson 1981] with

theoretical distinctions based on even smaller powers of Re. The asymptotic

notions in present use are not certain to be definitive, they are primarily a

fruitful scheme of rational guidance to the discovery of candidates.
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Another qualm is that the foregoing proof goes to show that the candidate

discovered is the only one which can be consistent with the premises outlined

in the early Sections. It does not address the question whether the fairly

complicated system of equations (18), (19) and (28) with associated conditions

is likely to be consistent, so that it can describe an actual candidate. In

addition, (28e) sets an initial condition for the boundary-layer type

equations (28) which is anomalous in the light of hydrodynamic stability

theory: this 'boundary layer' is to start out with a 'profile' u(--,y) of

which every point is an inflection point.

A more urgent concern, however, arises from uniqueness. In Prandtl's H
equation (6b), dpe/dXi is a known forcing function, but no information

concerning ap/ax in (28b) is yet to hand, so that the lower-deck equations,

at this point, are not a definite set of differential equations at all!

Similarly, ue(xi) is a known function in (6d), but the outer condition (25)

for (28) contains an unknown function A(x).

The upper-deck equations (18) are similarly indefinite. They describe a

potential-flow perturbation, but no information is yet to hand on the shape of

the 'body' past which this is a potential flow. Such a boundary condition for
A

(18) as y + 0 can arise only from the main deck, but that has been seen

(Section 5) to be mainly a transmitting mechanism, so that the missing

condition may be suspected to arise actually from the lower deck. The

indeterminacies of upper and lower deck may, perhaps, be related?
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7. Interaction

Apparently, a significant interaction between the decks implicit in the

mild-interaction definition or limit notion remains to be uncovered. A

natural starting point is the transmission statement (22) for the main deck.

By (10), (11) and (13), the upper-deck representation for the main-deck

streamline slope is
1

- _ - +-2 Au 

Wax + Re 2

21 A

u*al/axe I -

as Re + m, by (27). Consistency for the ratio v/u where main and upper

deck merge therefore requires

lim *9/ax - -u lim 5(i, )
y4

By (10) and (23), similarly,

Re 2-e.- Re 2(a*/ax)/(a,/ay)

and some information on this ratio is obtainable from (25), which implies

1 - A(;) +B(;) as o
2 y a +

whence

(aj/a;)/(aj/ay) + A'(;)/T as Y + ,

and by (27), consistency of v/u where main and lower deck merge requires

S( ,0) - -Re- 1/8A'()/T

This is a disappointing result because the transmission statement (22) for

streamline slope only tells us now that

1i A A~lim*/3x+0o as Re
2o
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i.e., the potential-f low perturbation of the upper deck is a flow past a flat

plate. It is not a good omen for the search for a non-vanishing upper deck.

The establishment of (27), however, has changed the basis for the

proofs. While the limit arguments preceding (27) had to be based on

comparison of powers of Re restricted only by inequalities, an opportunity

now arises for re-examining the limits in the light of precise knowledge of

those powers of Re. Indeed, a re-tracing of the argument leading from (15a)

to the i-independence of (21) -- verbatim, except for the additonal fact that

a - 3/8 -- shows that also

(Rel8o) el/8 _ - 2

L (Re - Re/8( 2 ) 6 + 0 as Re +

so that Re1/8% is also transmitted unchanged across the main deck. The

preceding calculation now supports the result

(29) lm (Re/Wax/) - u A'(;)/T ,Ao C

which expresses a mass-flow interaction between the lower and upper decks.

The upper deck perturbation is therefore a potential flow past a

Apermeable flat plate y =0 through which passes an outward volume-flow at a

rate -Re u A'(A)/T per unit Ax-distance (and unit span normal to the flow
e

plane), where use has been made of the fact that x - x - x, by (10), (11)

and (23). By standard potential theory, such a source distribution induces on

A A
the same surface y - 0 an x-component of velocity

A A'(x)
(30) U u(x,0) -Re- 1/ 8 u I f 1'(xl

where the integral denotes the Cauchy principal value, if it exists (and 1

is now used in its universal meaning).
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To profit from the other half of the transmission statement (22), note

that (23) and (27) cast Bernoulli's equation for the potential flow in the

upper deck into the form

+ .1 (a#/ax)2 + .1 (a#/ay)2 - const
p2  2

1 2 R-I/8 _ + Re-1/[ +p 1 .1 1(_

+ i us+ U O 2 A 2 JI

ax y
Re u;2 y(a*/ax e Re u'Y

1 2

~ + 2 U" e 2 e

A

which is its value as x + -M. This is again of no direct help, but a re-

examination of the transformation of (2) by (11), in the light now of (27),

shows that (16) can be sharpened to

/A A% A.

1/4 A Wa 1/4 a/x
Re D a / + Re ~ AA) +0 as Re*

If the classical Bernoulli calculation is applied to this, it supports the

stronger statement

Re1 /41p + 1 (a*/ax)2 + 2. (a#/ay)2 - P- 1 2 0
Re2 2 e

and if (23) and (27) are used as before and note is taken of (29) and (30),

the relation

A A 18 A Ap(x,0) = -ReI/8 ue u(x,0)

of form familiar from linearized potential-perturbation theory results. This

converts (30) into an equation for the pressure perturbation on the 'flat

plate' y 0, and since the pressure stretch is the same for all decks, by

(27), and the pressure perturbation is transmitted across the main deck, by

(22), it is also an interaction condition on the lower-deck pressure,
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2_u2  A'(Xl)

(31) - dx1 •
x-x1

So, this Hilbert integral equation has to be added to (28a-e) and (25) to

express a condition of mutual consistency betweer the three decks.

The initial similarity between Prandtl's equations (6) and the mild-

interaction equations (28) is greatly reduced thereby, and the relevance of

the weak-interaction knowledge (Section 3) for triple-deck theory is put in

doubt. One of the main distinctions is that Prandtl's equations (6) are an

inhomogeneous system forced by a known external flow, but the mild-interaction

equations (25), (28), (31) are a homogeneous system and may therefore be

suspected of admitting non-trivial solutions only for particular values of an

as yet unidentified eigen-parameter. The combination of boundary-layer

equations with a singular integral equation poses a novel mathematical

challenge.
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S. Successes and Failures

It will be recalled that the objective of the mild-interaction concept

was to resolve local breakdowns of the weak-interaction principle and most of

all, to elucidate the phenomenon of local separation characterized by reversal

of flow directions and a region of recirculation of the fluid close to the

body surface.

One of the simplest breakdowns of weak interaction occurs at the trailing

edge of a flat plate placed edgewise in a uniform stream, where the boundary

condition on the plane y - 0 changes suddenly from no-slip at the plate to

no-shear at the wake-center. Here the triple deck has led to a rather

convincing resolution (Stewartson 1981] of the weak-interaction singularity.

Admittedly, it is not nearly as simple as the theory here discussed, since the

analysis appears to require a 'staircase' of decks (Stewartson 1981], but the

central role of the mild-interaction concept appears well assured. For

instance, the predicted correction to Prandtl's flat-plate drag fits the

experimental observation unbelievably well to Reynolds numbers as low as 10.

The same analysis has been extended to wedge-shaped trailing edges of

sufficiently small wedge-angle [Stewartson 1981]. While those are welcome

results, however, they fall short of addressing the main issue because no

separation occurs under these circumstances.

A much more resounding success has been achieved in the analysis of

shock-boundary layer interaction in supersonic flight. Here the governing

equations are much more complicated than (2) because the fluid motion is

intrinsically coupled to thermodynamic processes, and an introduction to this

branch of the theory would completely overload the present account with

discussions of matters not central to the illumination of the triple-deck

concept. If the restrictions be accepted, however, which support the
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Illingworth-Stewartson transformation, then the compressible boundary-layer

equations for weak interaction can be associated with a system of Prandtl

equations (6) in a way explained briefly in the Appendix. This will make it

easy to understand, at least in principle, why the theory set out in the

preceding Sections furnishes an almost complete guide to parallel arguments

extending it to compressible-flow problems. What emerges (Stewartson 1975,

Messiter 1978] are the same triple-deck equations (25), (28) and this will be

no surprise now, for they govern the lower deck in which the velocity must be

small, in any case. There is one drastic change, however: the supersonic,

potential-flow perturbation in the upper deck is governed by the wave

equation, which replaces (30) by a strictly local relation leading to a much

simpler interaction condition,

(32) p(;)

in the place of (31). The supersonic triple-deck equations are therefore

still a homogeneous system, by contrast with the compressible weak-interaction

equations (Appendix), but they are a system only of differential equations.

There are several further, favorable circumstances in the supersonic

case, and the simplest example for illustrating them may be the flow past a

concave corner (Figure 5). For this, the wave equation and indeed, nonlinear

inviscid supersonic theory [Courant and Friedrichs 1948], predict a very

simple solution: two regions of uniform flow separated by a shock springing

from the very corner and inclined at an angle related directly to the corner-

angle. In reality, this can only be the asymptotic pattern far from the body

surface because the effect of the surface boundary condition must be

transmitted to the 'external' flow by a boundary-layer process, on which the

precise location of the shock will depend, even though the ultimate shock-
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inclination does not. There is a sense in which this is a strong interaction,

but clearly, the adjustment of the shock location is relatively easy to cope

with.

The boundary-layer process, however, poses a more difficult problem when

the corner is sharp (Figure 5). For if the radius of curvature of the metal

surface is much smaller than the displacement thickness (Section 3), weak-

interaction theory cannot serve and mild-interaction notions are the least

that recourse is needed to.

Similar considerations apply to the more important example of shock-

boundary layer interaction triggered by an incident shock (Figure 6). The

external flow is then more complicated, but can still be synthesized from

simple pieces readily adjustable to the boundary-layer process. A second,

favorable feature, readily apparent also in the corner-flow, is that the whole

process is of much more limited ey.tent in the streamwise direction than a thin

bubble (Figure 4).

The most important, favorable circumstance, however, was pointed out at

an early stage by Oswatitsch and Wieghardt even before any equations relating

to such interactions had ever been written down. The paradox was that the

weak-interaction equations (Appendix) are parabolic for the boundary layer and

hyperbolic, for the supersonic, external flow, whence mathematics proves that

the corner (Figure 5) can have no influence on the flow upstream of it. Just

that is observed, however, and to help explain it, they pointed out that the

physical influences upon each other of the mechanisms of supersonic flow and

(weak-interaction) boundary layer act in a sense favoring a self-contained,

mutual interaction of these mechanisms. In first translating these physical

considerations into formulae, Lighthill was able to give strong support to the

plausibility of such a self-contained process indicating an eigensolution,
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Sepairation Dead air Attachment

FiG. 1. Sketch of main properties ot flow when a shock wave interacts with a laminar
boundary layer.

Fig. 6. From K.Stewartson, Multistructured boundary layers

on flat platos and related bodies, Adv.Apjpl.Moch. 14,

p. 172, Academic Press, Now York, 1974.
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several properties of which he described. This gave a major impetus to

Stewartson's formulation of the triple-deck concept and its application to

shock-boundary layer interaction, which does involve separation.

It should be observed that the attendant reversal of flow direction near

the body surface introduces a striking difficulty so far ignored in the

present discussion. The boundary layer equations (6) or (28) are parabolic

with a nonlinear diffusion coeficient related primarily to the tangential

velocity component u = a /3y (as can be fully clarified by the Mises

transformation given in the Appendix). In a weak interaction, u > 0

everywhere and the effective diffusion is positive. The reversal of flow

direction inherent in separation, however, must make (28) describe a nonlinear

'heat-conduction' process that turns from forward to backward at a location

which is obscure. Clearly, the standard coordinates parallel and normal to

the body surface are then unsuitable variables, but discovery of a

transformation resolving the difficulty at an affordable price does not seem

imminent. Meanwhile, numerical experiments have had an understandable

tendency to degenerate in'o a long brawl with unstable diffusion.

In addition, shock-boundary layer interaction is a much more complicated

process than this account aims to discuss, involving at least two triple decks

as well as other, distinct, mild-interaction processes. All the same, a

combination of heuristic asymptotics with numerical experiments has, through

the efforts of a number of investigators, led to a theoretical prediction of

the detailed structure of supersonic shock-boundary layer interaction

[Stewartson 1975, Messiter 1978], which displays a most encouraging measure of

agreement with experimental observation. Similar success has been achieved

with the help of triple decks in the theoretical description of supersonic

flow past shallow corners (Figure 5) and even, past plate sections through
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which air is injected. All of them share the favorable features that the

process is self-contained, that the external flow is readily mastered and

adjusted, and that the interaction condition is (32). To learn more about the

successful explanation of supersonic flow separation, the Reader may wish to

turn to [Messiter 1978], [Stewartson 1981] and the literature there cited.

The subsonic bubble-end envisaged at the start of the present account as

the main motivation for the mild-interaction definition has proven much more

recalcitrant. When the qualitative influences upon each other of the

mechanisms of potential flow and boundary layer are considered, a change of

sign is found to occur at the sonic speed. As a result, the physical argument

makes a self-contained, mutual interaction implausible. The analytical and

numerical exploration failed to shake this prognosis and a consensus has

developed [Stewartson 1974] that the triple-deck equations (25), (28), (31) do

not possess a solution describing flow separation.
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9. Sychev's Proposal

To break this impasse, Sychev suggested that some of the mathematical

foundations of the theory be abandoned by relaxing the solution concept

(Section 2). To describe his proposal better, it may help to recall first an

old paradox of the inviscid break-away theory. To fix the ideas, flow past a

cylinder is commonly observed (Figure 7) to break away so as to leave a wide

region of slowly recirculating fluid as a wake. The first of all the

potential flow models for this, due to Kirchhoff, neglects the motion in the

wake so that the pressure there is a constant, Pw* That reduces the non-

uniqueness of the potential problem to that of a family of definite problems

dependent on the one parameter pw. Wake models are still a matter of

controversy, but SychevIs considerations involve them only in a local and

conceptual sense. The Kirchhoff model may then play a useful role as a

qualitative representation of the observation that the pressure on the

cylinder surface varies much less rapidly with distance downstream from the

break-away point than upstream.

For the discussion of the next equation, it is convenient to count the

arclength x along the body surface from the nose stagnation point (Figure

7). The separation point, denoted by xsep, marks a singularity of the

potential flow because a streamline bifurcates here; the branch leaving the

body surface is called separation streamline. It must leave the surface

tangentially, because a stagnation point at xsep  is neither plausible nor

observed, and potential theory shows the local character of the pressure

distribution on the surface to be then described by tBrodetsky 1923]

p pw + k(xsep -x) 1/2as x xsep

(33)
M Pw for x > x

sep
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with constant k. Potential theory also shows that p Xsep and k are

equivalent parameters standing in one-one relation, and for present

purposes, k is more conveniently regarded as the family-parameter of the

Kirchhoff model. Its value determines the potential solution uniquely and

k > 0 is found to imply a separation-streamline curvature at xsep exceeding

the body surface curvature in the sense that the separation streamline enters

the interior of the body. For this reason, positive values of k must be

excluded for the Kirchhoff model.

Negative values, on the other hand, would imply an adverse pressure

gradient of arbitrarily large magnitude upstream of xsep , which a boundary

layer cannot support without singularity and hence, the separation must occur

before its defined position xSep is reached. This contradiction is

sharpened to a complete dilemma by noting that k - 0 would imply the absence

of any singularity and the pressure on the body surface then continues to fall

over an arclength interval extendng beyond xsep so that the weak-

interaction solution also continues uniquely and there is no break-away of the

type observed (Figure 7). This paradox inherent in the Kirchhoff model was

one of the main reasons for its discreditation over many years.

Sychev suggested that it can be resolved by considering k to depend on

the Reynolds number in such a way that

(34) k(Re) + 0 as Re +

The proposition is more startling than may be immediately evident. It shifts

the singularity (33) from an external-flow property, as it is in the Kirchhoff

model, to an internal, boundary-layer feature. An attention-getting

implication is that, as Re + 1, separation is predicted to take place at a

position where the pressure of the external flow is still falling in the
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streamwise direction. That is not only quite contrary to intuition, but also

sharpens the negative implications for subsonic flow of the physical argument

of Oswatitsch and Wieghardt (Section 8).

The relative weakness and local nature of the singularity (33), (34)

suggest a possible connection with the notion of mild interaction. The

singularity might then be a feature of the potential-flow upper deck. The

next, natural question for Sychev was what Reynolds-number dependence of k

would be consistent with this? That is readily deduced from (11) and (27),

where the origin of local coordinates was taken at an appropriate point in the

mild-interaction region, now seen to be Xsep* Accordingly, x - is to

be interpreted as just x and e identified with pwo In the upper-deck

notation (11), the relation (33) then becomes

A^ A-1/2 A
Pw + Wp Pw + k ,xRe 2 as x+

A

PW as x +

and by (27), since the respective stretches for x and - are the same in

all three decks,

k -Y Re-1/ 16  as Re +

p - x 1/2 as + + -"

-0 as X+m

with constant Y > 0, because positive values of k are excluded for the

same reason as in the Kirchhoff paradox.

It may be worth remarking that (33) and (35) together express a condition

of consistency between the triple-deck Lims and the ever-present, fourth deck

of the external-flow Lim. What the observer looking at the external flow sees

as a local limit (33) describing a singularity (at finite Re), must be seen

by the observer looking at the upper deck as an asymptotic statement, but not
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neccessarily, as a more detailed condition. In Sychev's proposal,

accordingly, the role of the triple deck is to resolve the apparent

singularity of the external-flow Lim needed to make the total picture

consistent with a locally Kirchhoff model of break-away.

However, (35) contradicts (31) because it makes that integral roundly

divergent. Sychev proposes to avoid that difficulty simply by an

interpretation of the integral in the finite-part sense. The more explicit

meaning of (31) then becomes

2
- 2-1/2 - ue A'(s)+YTs 8/2H(s)

(36) p(x) +Y U H(-;) ds

X-s

where H(x) denotes the Heaviside unit step and the integral is again in the

sense of Cauchy's principal value.

The introduction of the finite part involves, of course, a substantial

shift of the solution concept into the realm of distributions and thereby

mandates a revision from the ground up of the theory outlined in this

account. A rational motivation of the Sychev form of mild-interaction theory,

however, is not nearly as urgent a concern as the look forward, and in a

striking role reversal, it was now Stewartson [1974 who called publicly for a

mathematical existence proof! To appreciate the substantial and novel

character of this challenge, it may help to collect here the set of equations

(25), (28), (35), (36) arrived at:

(37a) U v -/3*y,
- ;/a; +-di/dx + 32-/3-2

(37b) uau 3  u u/y

for all x and all y > 0

(37c) (,o1 ;(;,o) - *(;,O) for all

(37d) u-y + A(;) as y+ m , for all

with known constant T,
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(37e) +Ti as + --, for all Y-0

(37f) I - 1/ 2  as x -

with unknown constant y > 0,

(37g) + 0 as x+

and 2
2 12u s  A,~s + T al/Hls) d

(37h) p(x) + u 1  2 (-;) - d /

in the sense of Cauchy's principal value, with H(x) denoting the Heaviside

unit step. It is still a homogeneous system for the unknown functions

u(xY), ;(x,Y), P(X), A(x), and the uppermost question is now clearly whether

an eigenvalue Y exists for which these equations possess a nontrivial

solution?

Sychev was content with showing that such a solution, if there is one,

would have asymptotic properties, as x * , that give a plausible

description of the flow reversal and recirculation inherent in separation.

The existence question was addressed by Smith [1977], and in the absence of a

mathematical theory for anything resembling (38a-h), he attacked it

numerically. It is not hard to appreciate that the task was very difficult

and could not be accomplished with definitive completeness, but Smith [1977]

did succeed in establishing very substantial evidence in favor of the

conjecture that an eigenvalue of Y exists near 0.44.
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Appendix: Illingworth-Stewartson Transformation

Interdisciplinary research is made appreciably more difficult by the

custom that the literature of each branch of science takes a great deal for

granted. Thus reviews of triple-deck theory pass quickly to the supersonic

case where the main, early successes are found (Section 8). In so doing, they

take a remarkable correlation between compressible and incompressible boundary

layers for granted, and it may help non-aerodynamicists to gain ready access

to the more advanced reviews of triple-deck theory, if a succinct exposition

of that correlation be here appended.

(i) Boundary Layer Equations

The Navier-Stokes equations for steady, two-dimensional flow are

a(pu)/ax + ao(pv)/y = 0

P u vAu) . - x2 I ( u - v)I L [(hu + v)]ux a+ 3x 3 ax ax

P(u 3+ v - + (h +  u+ [p2 - )I

PC (uT+ v V u) 2 .~+ v 22+ o+L (.T !Z + L xT)

p X x ay ax ax a~~3)y ay

3u 2 u2 v)2 + u + v)2 2 3u + v)2
0 P2y)+ 2() ay * ~-

together with the equation of state of a perfect gas

. p - (c -Cv)PT •
p v

Here cp, cv denote the specific heats, assumed constant, X, the heat

conduction coefficient, and T, the temperature. For a fairly full

background of these equations, reference may be made, e.g., to [Meyer 1971].

Only weak interaction will be considered in this Appendix. For a

boundary layer on a solid surface y - 0, a direct extension to these

equations of the transformation (3), (5) reduces them to
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(38a) 3 (pu)/ax + 3(Pv)/3y - 0

(38b)u u) . dp+y au)

axu yv ) By ( )

(38c) PC(u + V -  u ) + P

(38d) (Cp -c v)PT - p(x) - p (x)

as Re - U L P 0/0 + 1, where the asterisks and subscripts of Sections 2, 3

have now been omitted and U, L, P0 and U0 denote reference values of

velocity, length, density and viscosity, respectively, and the variables are

nondimensional. The standard boundary conditions at a solid surface are

'38e) u - v - 0 and T or DT/ay specified at y - 0 for all x

and the conditions of consistency with the external, inviscid flow are

(38f) u + ue(x), T + T(X), p(x) = p(x) as y +  ,

where ue, To, Pa denote again the body-surface values of the external

flow. These are Prandtl's compressible boundary-layer equations.

As in the low-speed case (Section 3), a finite, Re-independent curvature

of the body surface does not affect the equations to the order in Re

considered, and x and y in (38a-f) can therefore again be thought of as

curvilinear, orthogonal coordinates along, and normal to, the body surface.

(ii) Mises Transformation

Let

Pu - a/y, Pv = /x, *(x,0) 0

to satisfy (38a) and take as new, independent variables the stream function

*(x,y) and the distance s(x,y) along streamlines. In the Lim under the

stretch (3), (5),

s(x'y) - x

and for any differentiable function f(*,s), the first derivatives become
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af 3f +f af af

u- .as ayPU *
Accordingly, the momentum equation (38b) is transformed into

(39) Pu - 12 + PU L (3Pu L

This form of the local momentum balance raises the roles of convection and

nonlinear diffusion into clearer relief and is often useful in technical work.

(iii) Crocco Relation

In the absence of chemical reactions,the stagnation enthalpy,

1 2 2c T + 1 (u +v ), of inviscid flow is constant along streamlines and in

particular, therefore, its body-surface value in the external flow,
1 2

T + 2 const. = I
p e 2 e -e

For gas-dynamical background, reference may be made, e.g., to [Meyer 1971].

1 2
If I - c T + - u denotes the local value of the same quantity, then the

p 2

usual combination of the energy equation (38c) plus u times the momentum

equation (38b) reads
I I) T aT

3U !- +v1 ) (= L L+T US-

(40)

if the Prandtl number PiC ) -A 1. This assumption, made in the following,

is a common gas dynamical approximation because the range of a is normally

very small and not too far from unity; for air, e.g., C = 0.72,

approximately, over quite a wide range of thermodynamic conditions.

If there is also no heat transfer to the body surface, the boundary

condition there is 3T/Oy - 0, and by (38e), also 31/3y = 0 there. An

obvious solution of (40) satisfying this boundary condition and consistent

with (38f) is

I const. - Ie
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Assuming uniqueness, this establishes a simple, direct dependence of local

temperature on local velocity,

(41) cpT e  I U

which eliminats the need for further consideration of (38c).

(iv) Illingworth-Stewartson Transformation

If M 0 T, which also adopted now as a common gas dynamical

approximation (for air, e.g., U 0 T0 .8 9  over quite a wide range of

conditions), then by (38d), pP is also constant across the boundary layer,

i.e., UP depends on x, but not on #. This clearly simplifies (30) a

little, and if account is also taken of the Bernoulli relation, Peuedue/ds

-dp/do, for the inviscid external flow, (39) takes the form

au Peue due a (u au
7- Pu do e (ea* 3)

If now u is referrd to the local unit ue by setting

u(*,s) u U(a) u'(*,s),

then au/Bs - u Iu'/as + uldu I/d and the momentum equation becomes

e u e e a ,ue

(42a) as + P d I e - Is e __ au,

with boundary conditions

(42b) u'(*,s) + I as *+ " for all a

(42c) u'(0,s) - 0 at the body surface, for all a

This is a system involving only u'(4,s) and functions of s because

P /P - T/To, by (38d), and on account of the Crocco relation (41).

Now recall the equations (6) for the incompressible boundary layer, which

are seen to be the special case of (38a,b,e,f) resulting for constant p and

U, say, P and pi respectively. If now the Mimes transformation to
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independent variables *if s i is applied to (6b) and if u, U eiuj, then

the resulting equation is the special case of (42) for P =P = Pil I J1e

au u' 2-1du a i
(43a) i i ei uN

i j ieii e i 1*

(43b ) Ul b s * + f r all s i

(43c) ui (O's ) 0 at the body surface, for all s

Now (42a-c) and (43a-c) are seen to be the same equation system, if we

identify

(44) p euds do P ue o d&, say,

(45)u'_P e/P 1due"u- due
$2 1 e -1 ei

That (45), like (44), refers only to the external flows can be deduced from

Crocco's relation (41) as follows. By (38d),

1 2 1 2_1 2 2 2
P PCT 2--u cT e+-2_ue-Tu' U eue2

P c T c T cT 2c T
p e PC epCep

so that u'2_P/ 2 Iu2 )u 2/(2c T ) and (45) becomes

2du du
U-1 ei

(46) (1 + ~)u 1 -I m U
peie

This completes proof of the Theorem discovered almost simultaneously by

Illingworth and Stevartson:

Theorem. To any inviscid, compressible external flow without chemical

reaction and with surface velocity distribution ue (x), we can associate an

inviscid, incompressible, external flow of surface velocity distribution

Uei( xi) by
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/dx U2  due/dx

(47) d 2c T 2

IiPiUei p e PePeUe

and for 1 1, 4 = T and no heat transfer, the weak-interaction boundary

layers are then related by

(48) ui(,xi) u(*,x)
u! u i  Uei(Xi) ue(x)

The theorem furnishes the solution of the compressible problem as soon as

the solution of the associated incompressible problem has been obtained,

though first in the Mises form u = u(J,x). To complete the quasi-Cartesian

form of the solution, a quadrature suffices:

Corollary 1. At fixed, corresponding x and xi,

dy PiuT
dYi Pe UTe

Proof. At fixed a and si, by definition, d* = pudy = Piuidyi so that

dy/dyi = Piui/(Pu) and the Corollary follows from (38d).

It is worth remarking that the theorem can be simplified by reference to

the local Mach number

Me (x) ue(x)/ae(x)

where a e(x) is the speed of sound defined by

2
(49) a ,Ype/Pe = (Y-)c Te-e pe

with now Y = c /cv, by (38d). By (41) and (49),
pv

cpdTe/dx = -uedue/dx

dMe /dx du e/dx dT e/dx u du e/dx

M u 2T + 2c-T ue e e pe e

so that (46) becomes simply

(50) uei/Me = const. = a0

say, and (44) completes the proof of
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Corollary 2. (47) in the theorem may be replaced by

u Ci x ) M a 4 0 Cx)W

X (I i .0 1a 0 )1 fx p e(s)P e(s)a esWds

Corollary I may also be simplified to

x-a 0 P 1  + Y- 1 e (I - U 2 ) dI

with integral taken at constant x because, at corresponding points (*,x )

and (*,x), the theorem gives ui/u -Uei/Ue -ao/ae, by (50), and T is

given in terms of u by (41).
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